close-packed layer - translation to ρωσικά
Diclib.com
Λεξικό ChatGPT
Εισάγετε μια λέξη ή φράση σε οποιαδήποτε γλώσσα 👆
Γλώσσα:

Μετάφραση και ανάλυση λέξεων από την τεχνητή νοημοσύνη ChatGPT

Σε αυτήν τη σελίδα μπορείτε να λάβετε μια λεπτομερή ανάλυση μιας λέξης ή μιας φράσης, η οποία δημιουργήθηκε χρησιμοποιώντας το ChatGPT, την καλύτερη τεχνολογία τεχνητής νοημοσύνης μέχρι σήμερα:

  • πώς χρησιμοποιείται η λέξη
  • συχνότητα χρήσης
  • χρησιμοποιείται πιο συχνά στον προφορικό ή γραπτό λόγο
  • επιλογές μετάφρασης λέξεων
  • παραδείγματα χρήσης (πολλές φράσεις με μετάφραση)
  • ετυμολογία

close-packed layer - translation to ρωσικά

DENSE ARRANGEMENT OF CONGRUENT SPHERES IN AN INFINITE, REGULAR ARRANGEMENT
Close packing; Close Packing; Close-packed; Close packed; Hexagonal close packed; Hexagonal close packing; Close packed hexagonal; Close packed lattice; FCC close packing; Cubic closest packed; Close-packing; Close-packing of monodisperse spheres; Cubic close packed; Hexagonally closed packed metal; Hexagonally Closed Packed metal; Cubic close packing; Hexagonal close-packed; Cubic close-packed; Close-packing of spheres; Close-packed atoms; Hexagonal Close-Packed; Hexagonal close-packing; Hcp lattice; Hexagonal close-packed structure; Hexagonal close pack; Hexagonal close packed structure; Hexagonal closest packed; Close packed spheres; Close-packed spheres; Closely packed spheres; Closely-packed spheres
  • Illustration of the close-packing of equal spheres in both HCP (left) and FCC (right) lattices
  • 120px
  • 120px
  •  Snowballs stacked in preparation for a [[snowball fight]]. The front pyramid is hexagonal close-packed and rear is face-centered cubic.
  • FCC arrangement seen on 4-fold axis direction
  • 120px

close-packed layer      
плотноупакованный [высокоуплотнённый] слой
close packing         

общая лексика

плотная упаковка

hexagonal close packing         
гексагональная плотная упаковка

Βικιπαίδεια

Close-packing of equal spheres

In geometry, close-packing of equal spheres is a dense arrangement of congruent spheres in an infinite, regular arrangement (or lattice). Carl Friedrich Gauss proved that the highest average density – that is, the greatest fraction of space occupied by spheres – that can be achieved by a lattice packing is

π 3 2 0.74048 {\displaystyle {\frac {\pi }{3{\sqrt {2}}}}\approx 0.74048} .

The same packing density can also be achieved by alternate stackings of the same close-packed planes of spheres, including structures that are aperiodic in the stacking direction. The Kepler conjecture states that this is the highest density that can be achieved by any arrangement of spheres, either regular or irregular. This conjecture was proven by T. C. Hales. Highest density is known only for 1, 2, 3, 8, and 24 dimensions.

Many crystal structures are based on a close-packing of a single kind of atom, or a close-packing of large ions with smaller ions filling the spaces between them. The cubic and hexagonal arrangements are very close to one another in energy, and it may be difficult to predict which form will be preferred from first principles.

Μετάφραση του &#39close-packed layer&#39 σε Ρωσικά